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Key ideas
• Estuaries generate variability by interaction of 

physical drivers and “geometry as filter” at the 
land-water-air interface.

• Geometry filters drivers at a variety of time scales
• Natural tidal creek systems have more complex 

land-water-air interfaces.
•• More complex geometry begets more variable More complex geometry begets more variable 

scalar gradient response.scalar gradient response.
• The “why does variability matter?” corollary: 

Native plants/fishes evolved in a more variable Native plants/fishes evolved in a more variable 
environment.environment.



Variability is stressful!

For example, consider that tides both stress 
and favor aquatic versus terrestrial biota.
• Low tide, hot day stresses fish/inverts while 

stimulating photosynthesis.
• High tide stresses rooted plants and reduces 

gas exchange and light. 
• Nevertheless, this is the native species 

template.
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• Concentration gradients in space and time 
(“Outcomes”).

• Space and time: must consider scale 
because drivers oscillate and episode at 
different scales
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What do we mean by “variability?”

• Drivers of variability in time (dC/dt):

Monthly Average Salinity DRIVERS:
1. Delta Outflow
2. Seasonal climat
3. ENSO Status



What do we mean by “variability?”

• Drivers of variability in time (dC/dt):

14-day Average Salinity DRIVERS:
1. Spring-Neap
2. Delta Outflow
3. Semi-drnl Tide



What do we mean by “variability?”

• Drivers of variability in time (dC/dt):

Daily Average Salinity DRIVERS:
1. Semi-drnl tide
2. Delta outflow
3. Wind
4. Bar. pressure



What do we mean by “variability?”

• Drivers of variability in time (dC/dt):

Hourly Average Salinity DRIVERS:
1. Wind
2. Semi-drnl Tide
3. Outflow
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What do we mean by “variability?”

• Drivers of variability in space (dC/dx)
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Scaling down, geometry really matters
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Different Physiography and Land-Water Interface
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Particle tracking experiment:

Notice exchange difference
between the weak and strong
ebb tide.





Particle tracking experiment:

Weak ebb tide goes west
Late AM to early PM –
First warm peak



Particle tracking experiment:

Strong flood enters from east  
for 2 hours – 2PM to 4PM 
Cold (stratified?) water from 
Suisun Slough



Particle tracking experiment:

Strong flood continues – 4PM 
to 6PM 
Warm mixed water from west



Particle tracking experiment:

Strong flood continues – 6PM 
to 9PM - high slack tide
Cold (stratified?) from east



Particle tracking experiment:

Strong ebb, about 1AM 
last warm peak from mixed 
water column before night 
cooling



Bay Institute; based on Atwater 1982

Hydrogeomorphic variability lost



Key ideas
• Estuaries generate variability by interaction 

of physical drivers and “geometry as filter”
at the land-water-air interface.

• Geometry filters drivers at all time scales
• Natural tidal creek systems have more 

complex land-water-air interfaces
•• More complex geometry begets more More complex geometry begets more 

variable gradient response.variable gradient response.
• The “why does variability matter?” corollary: 

Native plants/fishes evolved in a 
more variable environment.



DRERIP Tidal Marsh 
Restoration “Outcome”
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• We know something about land-water 
interface temperature dynamics for this 
shape: MHHW
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• We know something about land-water 
interface temperature dynamics for this 
shape:

• What about:
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Initial Condition

Suisun land-water interface characteristic
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x Day 1 “Restoration”

50-100 years

Initial Condition

Suisun land-water interface characteristic



Elevation (ft)
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Yolo-Cache land-water interface characteristic

Initial Condition
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Yolo-Cache land-water interface characteristic

Initial Condition



x

Yolo-Cache land-water interface characteristic

Day 1 “Restoration”

50-100 years

Initial Condition
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High frequency variability at First Mallard Branch
First Mallard Temp (C)
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High frequency variability at First Mallard Branch

S42

First Mallard Temp (C)
S42 Temp (C)
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all plots tend to show more wiggles (aliasing visall plots tend to show more wiggles (aliasing vis--àà--vis tidal timescale)vis tidal timescale)
in Sheldrake Sloughin Sheldrake Slough

seemingly on the tidal timescale even though this is filtered daseemingly on the tidal timescale even though this is filtered datata
which suggests existence of a forcing not at the tidal timescalewhich suggests existence of a forcing not at the tidal timescale..
could this be a diel forcing due to covert operations on a dailycould this be a diel forcing due to covert operations on a daily basis ?basis ?
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Connectivity lost: 
Tidal creeks systems are now “Lakes”

Suisun MarshSuisun Marsh

There are
many others...
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